• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About Us
  • Research
    • Gas Dynamics & Chemical Kinetics
      • Shock-Tube Physics
      • Shock-Tube Kinetics
        • Ignition Delay Time
        • Speciation
      • Chemical Kinetics Modelling
      • Fundamental Flame Propagation
        • Laminar Flame Propagation
        • Turbulent Flame Propagation
      • Detonations and Explosions
    • Rocket Propellants and Energetics
      • Composite Solid Propellants
      • Liquid Monopropellants
      • Hybrid Rockets and SFRJ
      • Gas Generant Systems
    • Optical Diagnostics and Spectroscopy
      • Direct Laser Absorption
        • Fixed-Wavelength Diagnostics
        • Scanned-Wavelength Diagnostics
      • Chemiluminescence
      • Planar Laser Induced Fluorescence
      • High-Speed Schlieren and Shadowgraph
    • Additional Research
  • People
    • Principal Investigator
    • Research Scientists
    • Post-Doctoral Researchers
    • Ph.D. Students
    • M.S. Students
    • Undergraduate Students
    • Former Students
  • Facilities
    • Turbomachinery Laboratory
    • Shock Tubes
      • High-Pressure Shock Tube
      • Aerospace Shock Tube
      • Square Shock Tube
      • Aerosol Shock Tube
      • Detonation Tube
      • Aerospace Corporation Laboratory
    • Optical Diagnostics
      • Quantum Cascade Lasers
      • Tunable Diode Lasers
      • Gas lasers
      • High-Speed Imaging
      • Collaborator Diagnostics
    • Constant-Volume Combustion Vessels
      • HPHT Flame Speed Vessel
      • Turbulent Flame Speed Vessel
    • Propellant and Energetics Laboratory
      • Mixing and Manufacturing
      • High Pressure Strand Burner(s)
      • Hybrid Rocket Stand
      • Supporting Equipment and Diagnostics
      • Safety Testing
    • Unique Experiments
  • Publications
  • Patents
  • Gallery
  • News
  • Contact Us

Petersen Research Group

Texas A&M University College of Engineering

Optical Diagnostics and Spectroscopy

Optical diagnostics are well-suited for combustion applications in that they allow for time-resolved, non-intrusive measurements of flow-field parameters. Such diagnostics can permit measurements of bulk flow-field parameters such as spatially resolved velocity and laminar flame speed. Additionally, when coupled with a knowledge of molecular spectroscopy, optical diagnostics can provide quantitative measurements of specific species concentrations.

The following areas covers the research activities of our group on Optical Diagnostics and Spectroscopy. Please follow the links for more information.

  • Direct Laser Absorption
    • Fixed Wavelength Diagnostics
    • Scanned Wavelength Diagnostics
  • Chemiluminescence
  • Planar Laser Induced Fluorescence
  • High-Speed Schlieren and Shadowgraph

Research

  • Gas Dynamics & Chemical Kinetics
  • Rocket Propellants and Energetics
  • Optical Diagnostics and Spectroscopy
    • Direct Laser Absorption
    • Chemiluminescence
    • Planar Laser Induced Fluorescence
    • High-Speed Schlieren and Shadowgraph
  • Additional Research

© 2016–2023 Petersen Research Group Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Turbomachinery Laboratory
  • J. Mike Walker ’66 Department of Mechanical Engineering
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment